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Abstract 
We explore the path an electron might take during the absorption and production of photons in 
transitioning from one orbital to another. Orbital mechanics are used to consider possible 
transition paths. We conclude that the path is most likely a spiral.  

Introduction 
In the early 20th century, Nils Bohr proposed that electrons could only orbit the nucleus of an atom 
at distinct distances, or orbits. This accurately explained the spectral lines caused by photons of 
light energy emitted by atoms when electrons dropped from an orbit to one closer to the nucleus of 
the atom. They equally explained the absorption of photons by electrons jumping from an inner 
orbit to an outer one.  

This restriction to distinct orbits contradicted what was known from classical mechanics. For 
example, a satellite can orbit the earth at just about any distance from the surface, and those 
distances do not seem to be restricted to a select few.  

Since the restriction of electrons to distinct orbits could not be explained by classical mechanics, 
said restriction contributed to the creation of the theory of quantum mechanics. Initially these 
orbits were conceived as circular. Later, as physicists attempted to reconcile the dual nature of 
particles as sometimes acting like waves, the orbits became called orbitals and assumed much 
more complicated shapes. However, the basic mechanics of spectral lines and distinct orbitals 
that produce them have not changed. 

We proposed earlier that space may be distorted by the creation of a particle, such as a proton [1]. 
In the early 20th century this possibility was not considered as a potential explanation for the 
amount of energy electrons absorb or release when transitioning between orbitals. Here we explore 
the implications of considering the hypothesis that the insertion of a charged particle into space is 
a possible explanation for the unexpected mechanics of electrons orbiting atoms.  

Bohr Model 
For simplicity we focus on the simple hydrogen atom with one proton in the nucleus and one 
electron. In the center of the atom is a single proton. The electron that orbits the nucleus does so in 
distinct orbits. In the original Bohr model, these were circular orbits confined to a succession of 
spheres. Each sphere is identified by a unique integer number, denoted by n, where n = 1 to ∞. The 
radius of each sphere was related to the radius of the first one by the exquisite formula 

𝑟𝑛 =  𝑟1𝑛2        (1) 



where rn is the radius of the nth orbit. 

 

Figure 1. Bohr model of an atom. This figure illustrates only the first 8 electron quantum levels. (a) 
Quantum level 8; (b) quantum layer 8 (not a Bohr concept.) Drawn to scale: the radius of each quantum level 
is proportional to the square of its quantum number (Eq. (1).) The nucleus is 105 times smaller than electron 
quantum level 1. The Bohr model was introduced in 1913. Since replaced by more complex models, its 
simplicity and clarity still make it a useful starting place for any model of atomic phenomena. 

The Bohr model remains an excellent match to the known data for atoms that have only one 
electron such as H, He+, Li++, etc. As photons are absorbed, the orbiting electron will jump from an 
inner orbit to one further from the nucleus. When the electron jumps back from the outer orbit to 
the original inner orbit, a photon of the same energy will be emitted. 

Classical Forces at Play 
The classical mechanical forces at play within a hydrogen atom are the gravitational force and the 
electrostatic (Coulomb) force. 

The gravitational force for 1H can be computed using Newton’s Law of Gravitation: 

𝐹𝑟 =
𝐺𝑚𝑝𝑚𝑒

𝑟2𝐺
         (2) 

Where 𝐹𝑟𝐺
  is the gravitational force at distance r from the nucleus, G is the Gravitational Constant, 

and mp and me are the masses of the proton1 and the electron. It is easy to show that the 
gravitational force is about 3.6E-47 N (Newtons) at the radius of Electron Quantum Level (EQL) 1 
(5.29E-11 m)2 and declines outward from there according to Eq. (2). 

The electrostatic force for 1H is given by Coulomb’s Law: 

𝐹𝑟 =
𝐶𝑞𝑝𝑞𝑒

𝑟2𝐶
 =

𝐶𝑞2

𝑟2         (3) 

 
1 Consistent with the treatment in reference [1], mp is the mass of the proton less quarks. 
2 Computed using the reduced mass of the electron as discussed below. 



where 𝐹𝑟𝐶
  is the gravitational force at distance r from the nucleus, C is the Coulomb’s Constant, qp 

= qe = q is the elementary charge, and r is the distance between them. It is easy to show that the 
electrostatic force is about 8.2E-8 N at the radius of EQL 1 and declines from there. This is 
enormously more powerful than the gravitational force at the same distance.  

Quantum Energy 
We call the energy absorbed to move up (or emitted when moving down) between two adjacent 
energy levels the quantum transition energy, or quantum energy for short. This is well-known to be 
determined in hydrogen by the Rydberg formula: 

𝐸𝑛1
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𝑐ℎ

𝜆
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1
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2 −

1

𝑛2
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Here, 𝐸𝑛1

𝑛2

 𝑄
 is the quantum energy absorbed on transition between n1 and n2 where n2 > n1 (or 

emitted if n1 > n2), c is the speed of light, h is the Planck constant, 𝜆 is the wavelength of the photon 
absorbed or emitted, and RH is the Rydberg constant for 1-Hydrogen. We will restrict our attention 
to the case where n2 = n1+1. To move from quantum level 1 to quantum level 2, 1.63401E-18 Nm of 
energy are needed3, which declines to 5.11050E-21 Nm going from level 9 to level 10.  

Classical Analysis 
The degree to which the equations of orbital mechanics—derived from careful measurements of 
the orbits of celestial bodies—apply to the orbits of electrons around the nuclei of atoms. In the 
latter case, the role of gravitation is replaced by the Coulomb (electrostatic) forces between the 
protons in the positively charged nucleus and the orbiting electron. (The gravitational force is also 
at work in the atom, but is so much smaller than the electrostatic force (by a factor of 1040) it is 
almost always ignored.) 

In orbital mechanics the total energy of an object in a circular orbit is the sum of potential energy 
and kinetic energy [4]. The potential energy of an orbiting body starts out with a small negative value 
and gets closer to 0 (i.e., increase) as the orbital radius increases. For the electrostatic force the 
formula for the potential energy, 𝐸𝐶

𝑈 , is  

𝐸𝐶
𝑈 = −𝐶𝑞2/𝑟       (4) 

in Nm. The kinetic energy due to the angular rotation of the orbiting electron is given by  

𝐸𝐶
𝐾 =

𝐶𝑞2

2𝑟
= −

𝐸𝐶
𝑈

2
      (5) 

The total Coulomb energy 𝐸 
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3 We arbitrarily limit precision to 5 digits for brevity. This is the precision to which the radius of the proton is 
currently known. 



Moving from an orbit n to an orbit n+1 causes a change in total energy given by 

𝛥 𝐸𝑛
𝑛+1

𝐶
𝑇 = (

𝐶𝑞2

2𝑟𝑛+1
−

𝐶𝑞2

2𝑟𝑛
)     (7) 

Simplifying and using (1) this becomes 

𝛥 𝐸𝑛
𝑛+1

𝐶
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𝐶𝑞2
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1
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This is just the negative of Eq. (4). This is as expected from the equations of orbital dynamics. The 
Rydberg value (4) is the amount of energy absorbed by the electron, which is turned into kinetic 
energy to raise the electron from level n to level n+1. At the same time, this is equal to the loss of 
kinetic energy by the orbiting electron as it moves from the higher angular velocity of orbital n to the 
lower orbital energy of orbital n+1. In general in orbital mechanics the energy needed to change 
orbits does equal the energy lost in the reduction of the angular velocity in the higher orbit. 
Meanwhile the potential energy of the electron in orbital 2 (compared to its earlier value in orbital 1) 
is decreased by the sum of these two: the gain in kinetic energy from the photon and the loss in 
kinetic energy by the reduction in orbital angular velocity.  

Everything we have discussed is classical mechanics: properties of orbital mechanics well-known 
to Bohr. The departure from classical mechanics is only that orbitals are related to each other by 
Eq. (1) having only integer n: n cannot assume non-integral values.  

In The New Physics model, we started with the hypothesis that inserting a particle into space 
displaces rather than replaces space [1]. This causes space to fracture spherically in what we call 
nuclear quantum levels, giving rise to gravitation (and inertia [5].) These nuclear quantum levels 
start near the nucleus starting with radii on the order of 10-15 m. 

We extend this model by assuming that inserting a charge into space also spherically fractures 
space, but on a different scale: the electron quantum levels. Electron quantum levels start with 
radii around 10-11 m.  

The notion that introducing a charge into space has an impact on space itself was probably not 
considered a century ago. The Michaelson-Morley experiment seemed to have demonstrated that 
space was indeed not a medium in which light waves propagated: it was nothing. This ignored the 
fact that the speed of light in space is determined by its permeability and permittivity, just as is the 
case with other transparent materials. In any case, the physics community evolved the notion that 
electrons were in a superposition of a particle state and a wave state, and that the only explanation 
of the Bohr model was, effectively, that the wave could only be a standing wave at the orbital 
distances governed by Eq. (1), so those were the only radii at which electrons could persist.  

This has often been interpreted to mean that electrons simply leap somehow instantaneously from 
one orbital to the next, or at minimum travel nearly instantaneously in a straight line as illustrated in 
Figure 2. 



 

Figure 2. The quantum mechanical view of electron transition from orbital 1 to orbital 2 (drawn to 
scale, nucleus too small to show.) 

When a body orbits another body and the mass of one is not negligible, they are really orbiting each 
other about the center of mass. The reduced mass of the electron, 𝜇, is 

𝜇 =
𝑚𝑒𝑚𝑝

(𝑚𝑒+𝑚𝑝)
       (4) 

“Since the reduced mass of the electron-proton system is a little bit smaller than the electron 
mass, the reduced Bohr radius is slightly larger than the Bohr radius.” [2] 

𝐵𝑜ℎ𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 = 5.29177𝐸 − 11 

"𝑅𝑒𝑑𝑢𝑐𝑒𝑑" 𝐵𝑜ℎ𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 =  𝑟1 = 5.29462𝐸 − 11    

Both radii are expressed in meters. We use the latter since it is more accurate, and use Eq. (1) to 
find the radii of the outer orbitals. 

The electron is orbiting the nucleus at quite a high speed. The formula for the angular velocity is  

𝜔𝑛 =
𝑛ℏ

𝜇 𝑟𝑛
2𝐶

       (9) 

Here, n is the electron quantum level number, ℏ is the reduced Planck constant (the Planck constant 

divided by 2π), and rn is the “reduced” Bohr radius of orbital n. For orbital 1, the angular velocity is 

4.13189E16 radians/s, or (multiplying by the radius) 2.18769E6 m/s. For orbital 2 this is 

1.09385E6 m/s, or about 1,000 km/s. If the electron is in any way a particle, it is simply unlikely 

that the electron can make an abrupt, 90o transition and pop to the next quantum level as illustrated 

in Figure 2. This is where the advocates of quantum mechanics will tell you physics is not supposed 

to make sense. Seriously? 

What might the real path of the electron be? The most efficient way to transfer from one orbit to 

another is called the Hohman transfer [7].  



 

Figure 3. Hohman transfer from an inner circular orbit to an outer circular orbit using an elliptical transfer 
orbit [7]. (Source: Astronomical Returns, 2023.) 

Nature has a way of being inherently efficient, so it tempting to assume this is the path an electron 
might take in transitioning from one orbital to the next and back again. The problem with this model, 
however, is that two bursts of acceleration are required to effect a Hohmann transfer: one at the 
start to enter the elliptical transfer orbit, and one at the end to transition to the outer circular orbit. 
(This is true also if the starting and destination orbitals are elliptical.) 

It is a little bit difficult to imagine the absorption of a photon of energy occurring in two distinct 
phases as required by a Hohmann transfer. There are other possible transitions, see [7] for details. 
But all but one of them require multiple bursts of acceleration. 

Spiral Transfer 
The only way to transfer orbits under a continuous absorption of energy is the spiral transfer. The 
number of revolutions will determine the transfer time between the orbitals if the radial velocity is 
constant. This may not be an accurate assumption but can serve as a starting point. 

We have created a simulation of such a transfer with the number of revolutions as a parameter. 
Constants used in the simulation are listed in the Appendix.  

We set as a parameter whether the electron is transitioning from orbital 1 to orbital 2, or the 
reverse. To simplify the discussion, we will just assume the former. We set the starting radius to the 
radius of orbital 1 (the Reduced Bohr radius) and the stopping radius to that of orbital 2 as 
determined by Eq. (1). The initial and final velocities are set to the values noted above. 



The simulation is set to increment in (arbitrary) time steps of 1E-20 seconds. To prevent looping due 
to some simulation error, maximum steps are set to 50,000,000, which limit should not be reached. 

At the outset, the angle of the electron in its orbit is arbitrarily set to 0. The period of each orbital is 
the inverse of {the angular velocity in radians/s as given in Eq. (9) divided by 2π}. These are for orbital 
1 = 1.52066e-16 s and for orbital 2 = 1.21653E-15 s.  

Total time for the transition is then estimated by averaging these two periods and multiplying this 
average by the number of revolutions parameter supplied. 

The velocity of transition is then computed as the distance between the radii divided by the 
estimated time for transition. 

We need only provide a function that simulates each step. This function takes three parameters: 
the current radius of the electron, its current angular displacement, and its rate of angular 
displacement. It increments the radius by the {velocity of transition by the time step}. It increments 
the angle of rotation by the product of the rate of angular displacement times the time step. It 
returns the new radial position and angle of the electron. 

It remains only now to loop until we reach the new orbital by calling the step function, then 
updating the angular velocity according to the new radius (using Eq. (9).) 

If we assume it takes ten revolutions to transition from orbital 1 to orbital 2, this looks like Figure 4. 

 

Figure 4. Simulated path of an electron transitioning from orbital 1 to orbital 2 in about 10 revolutions of the 
nucleus. A transition from 2 to 1 follows a similar pattern. 

The time for this transition to take place is 6.84320e-15 s.  

By contrast let’s assume it takes the electron 100 revolutions to make the transition. The result is 
shown in Figure 5. 



 

Figure 5. Simulated path of an electron transitioning from orbital 1 to orbital 2 in about 100 revolutions of the 
nucleus. 

The time to transition in this case is 10 times the time taken by the path in Figure 4. Are these times 
reasonable? 

It is not easy to measure the orbital transition time for an electron. It appears to be in the range of 
femtometers (10-15) to picometers (10-12). Times for both 10-revolution and 100-revolution 
transitions are in this range. More precise measurements are needed to determine the actual 
trajectory of the electron from one orbital to another. But we remain confident that it is not a 
straight line. 

Conclusion 
We have taken a close look at what path might be followed by an electron transitioning from one 
orbital to another. We have questioned the proposition that this is either a straight line at right 
angles to the orbits, or that it is somehow “instantaneous”.  We have put forth the hypothesis— 
based on classical orbital mechanics—that this might be a spiral path. More precise 
measurements are needed to determine the actual time of transition and number of revolutions of 
the nucleus required to effect the transition. 



Appendix 
Constant Value Units 

Coulomb’s constant 8.98755e9 Nm2/C2 
Electron mass 9.10938e-31 kg 
Proton mass 1.66340e-27 kg 
Reduced Bohr radius 5.29465e-11 m 
Planck constant 6.62607e-34 Ns 
Reduced Planck constant 1.05457e-34 Ns 
Photon energy 10.19868 eV 
Period orbital 1 1.52066e-16 s 
Period orbital 2 1.21653E-15  

 

References 
[1] Physicist, E., The Mechanism of Quantum Gravity, https://NewPhysics.Academy,  
(accessed 2024-08-24). 
 
[2] https://en.wikipedia.org/wiki/Bohr_radius. Accessed 2024-06-17. 

[3] https://en.wikipedia.org/wiki/Rydberg_constant. Accessed 2024-08-12. 

[4] https://scienceready.com.au/pages/energy-changes-in-orbit. Accesses 2024-08-11. 

[5] Physicist, E., The Mechanism of Inertia, https://NewPhysics.Academy, (accessed 2024-
08-24). 
[6] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699684/. Accessed 2024-08-27. 

[7] https://oer.pressbooks.pub/lynnanegeorge/chapter/chapter-7-manuvering/. (Figure 1 from this 
reference is under public domain license from Astronomical Returns, 2023.) Accessed 2024-08-27. 

[8] https://www.nature.com/articles/lsa2017134. Accessed 2024-08-28. 

[9] https://sites.arizona.edu/mohammedhassan/research/. Accessed 2024-08-28. 

[10] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699684/. Accessed 2024-08-28. 

 

 

 

 

 

https://newphysics.academy/
https://en.wikipedia.org/wiki/Bohr_radius
https://en.wikipedia.org/wiki/Rydberg_constant
https://scienceready.com.au/pages/energy-changes-in-orbit.%20Accesses%202024-08-11
https://newphysics.academy/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699684/
https://oer.pressbooks.pub/lynnanegeorge/chapter/chapter-7-manuvering/
https://www.nature.com/articles/lsa2017134
https://sites.arizona.edu/mohammedhassan/research/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699684/

